Slow sampling rates 9214

Hello

I'm looking to collect data using a compact 9174 DAQ with a thermocouple module high precision 9214.  I use 15 of the 16 channels available in my experiences.  I used the DAQ assistant to configure the module to collect at a rate of 4 Hz update after each sample.  However, when I write my data, there are 4 entries per channel per second (this is what would be expected) but the values only update once per second (it shows the same value 4 times in a row, then updates, shows that the number 3 times more, update, 3 times more and so on).  In the same loop I am collecting data with a 9205 to read the voltage input and am able to get 4 distinct valleys per second with this module, it happened to someone else?

Hello LabNewed,

Can you post a code illustrating your problem?

This way I can check what is happening in the code.

You use the high speed or high resolution mode for your measurements?

If you are using high resolution, so it's expected behavior.

This is because the method of sampling is analyzed (so it scans only one channel at a time in a multiplexed way).

Mode high resolution your bandwidth is 14.4 Hz (for 15 channels is 1 sample/s about), mode high speed this bandwidth is 80 Hz (> 4 samples/s to 15 channels).

Please also take a look at the table of modes of timing here: http://sine.ni.com/ds/app/doc/p/id/ds-314/lang/en

Tags: NI Software

Similar Questions

  • myRIO sampling rate

    I'm new to myRIO and use it to measure sine wave (0V to 5V) of up to 10 Hz 20 KHz. I also quickly transformed of Fourier (FFT) of the signal measured in real time.

    Sideways FPGA of things, I try to keep things pretty simple, just read 2 channels of AI (connector B: AI0 and AI1), therefore potentially able to read each HAVE 250 kech. / s (as the unit has a capacity of 500kS/s). Does that mean this program gets a two analog inputs data exactly every 4 microsecond? If this is not the case, how can I make sure that the data is acquired through a fixed sampling rate?

    I realized that we can add to the FFT in FPGA function, but I wanted to manipulte the acquired data of analog inputs before it is sent to the FFT, which I don't know how to do now. Can someone explain me how do the arithmetic data (muliplication, division and so) on the acquired data and analog inputs to reducde the 12-bit resolution 10-bit to program FPGAS.

    Later, I created a myRIO program to read analog data 2 FPGA program which continues to turn in timed loop. In the program myRIO, the timed loop is configured to 1 MHz clock source type by a delay of 25 microseconds.

    This configuration means that the loop runs exactly every 25 microsecond?

    When I set up the less than 10 micro second time, myRIO has stopped working. Why is it so?

    Is it because myRIO cannot run as fast as FPGA?

    It is advisable to make the FFT of myRIO side analog data or FPGA?

    When I tried to do FFT using the power spectrum of myRIO side, he asked for waveform data. What I acquire is data analog. How can I convert in waveform data?

    If I read in the forum for help, I couldn't have the full answer to my doubts

    Discussions at the Forum I did reference:

    http://forums.NI.com/T5/academic-hardware-products-Elvis/setting-tick-count-in-myRIO-FPGA-software/m...

    http://forums.NI.com/T5/academic-hardware-products-Elvis/myRIO-aggregate-sample-rate/m-p/2707061/HIG...

    A lot of good questions here, I will try to answer as much as I can so as to offer a bit of advice.

    First of all, if you are looking to acquire data at a very specific rate on the FPGA, you'll want to use the Timer VI.  You are also going to use a FIFO of DMA to transfer data of FPGA in real time. A node read-write using as you do now means you'll run out of samples, or read the sample even several times.  The link below is a very good tutorial on how to do what I described above.

    http://www.NI.com/Tutorial/4534/en/

    Later, I created a myRIO program to read analog data 2 FPGA program which continues to turn in timed loop. In the program myRIO, the timed loop is configured to 1 MHz clock source type by a delay of 25 microseconds.

    This configuration means that the loop runs exactly every 25 microsecond?

    When I set up the less than 10 micro second time, myRIO has stopped working. Why is it so?

    Is it because myRIO cannot run as fast as FPGA?

    In general, you should not run a timed loop much faster than 1 kHz.  Using timed inside loop knots, you can monitor the real rate of loop during execution to see if f you meet your needs of the moment.

    The portion of your myRIO RT is slower than an FPGA in the sense where it cannot manage the rates of lines 40 MHz (he makes up for it by being able to work with much better pictures) and it is important to remember that it is just a computer.  The advantage of a real-time operating system, is that you have more control on the Scheduler, not that he is faster (less jitter, not faster code). There is more good reading below.

    http://www.NI.com/white-paper/3938/en/

    It is advisable to make the FFT of myRIO side analog data or FPGA?

    When I tried to do FFT using the power spectrum of myRIO side, he asked for waveform data. What I acquire is data analog. How can I convert in waveform data?

    I would say that it is generally advisable to treat your FFT on the side FPGA as long as you have the resources available, but for many applications probably little matter ultimately.

  • Question DAQ sample rate

    Hello

    I tried to understand how the 'number of samples' and 'rate' controls affect the frequency of sampling for the DAQ hardware. For example, say I want to acquire data from a sensor of pressure at a frequency of 10 Hz intuitively, I would think everything I do is on the desired sampling frequency, in this case 10 Hz control the 'frequency', try this, I know that's not true. I read that 'number of samples' affects the sample rate by setting a buffer value that must be reached before the VI will process the acquired data. So I also tried to set the "number of samples" to 1 and "rate" at 10, thinking this would have led to a sampling frequency of 10 Hz, and again, it is not. The only way I know to control the sampling frequency is using the wait function (ms), but then I always get buffer overflow errors.

    Can somone if you please explain to me the error in my thought process and also tell me the best way to control the sampling frequency? Is attached a simple VI, I am using to measure my actual sample rate and compare it to the sampling frequency that I am trying to achieve.

    The VI use the DAQ assistant to acquire data of pressure, inserts data into a table, and measure the size of the array. I'm then by dividing the size of the array by the elapsed time in seconds for the sample/s (I'm also dividing the number of iterations of the loop by seconds and using it as a comparison). I compare this value to my entries for the 'number of samples' and controls 'speed' in order to give a sense of the role they play in sampling rate. The VI also allows to choose to use the wait function (ms), as well, using this function is the only way I can control the actual sampling frequency, but then I always get buffer overflow errors. Any information would be helpful, thanks!

    What is the device that you are using? My guess is that whatever you have, it does not allow such a slow pace and is failing at its minimum.

  • channel and sampling rate is not updated until the next cycle

    Hi all

    I'm new to LabVIEW and I wrote the code for the measurement of temperature using the cDAQ-9178 or NI 9214. Could someone please look at my code and help me understand why... my names channel to sample and rate update, until the next time I run my program.

    For example: if I enter the name of the channel "ONE" and "10" sampling frequency... and draw my program will be executed using previous information entered by the user. If I press the race a second time, then it will use the '10' sample rate and channel "ONE". Everyone can't see what I did wrong? I know that my code is absent, but she does everything that I need, except for the update.

    I really want to use a structure of the event, but failed miserably in my attempts. Thank you

    Stream.  Updates the values in your Subvi are run in parallel to the Structures of your event.  The simple solution is to simply put your update of the values inside the event.  In this way the controls are not read until you actually press the next button.

  • With the NI 9205 module Max sampling rate - problems

    Dear friends,

    I develop a project of lv, which makes and control system of engine dyno. The material is CRio-9022 with other cards and also 9205 for AI. There is an encoder for angle attached to the motor shaft with 3600 chatted by Tower as well as an index to indicate the end of a revolution. the output of the encoder is measured by card 9411. The speed of the motor is 1500 rpm. I measure pressure data and couple when I receive a 'tick' of the wheel. This means my sampling rate for pressure and torque each is 90KO/s.

    but I was not successful to lead it. The program is great and I can show them, but I believe that there is a problem in the choice of material for the task. With the data of pressure and torque of the 9205, I also measure other channels for the controller output mass flow and temperatures. So in all I use 8 channels of the 32 available. But only the pressure and torque are acquired at the wheel-driven sampling rate. the rest are acquired about 5 times per second.

    Since the 9025 is a multiplexing ADC, 250K sampling frequency is divided by the number of channels accessed = 250 K/8 = 31 K samples/channel. With this in mind, I decided to acquire data of pressure and torque with each beat 3rd rotary encoder, essentially on 30K samples/s sampling. However, I see a large amount of noise.

    So I decide to average more than 1 second cycles (so the engine runs at about 25 cycles/sec, I averaged over this issue). The resulting pressure and torque graphics do not match with those measured by an oscilloscope in terms of amplitude but the frequency and shape is correct.

    I noticed an interesting feature in the charts. When I pass interpolation between the points, I see several curves made by points instead of a continuous locus of points. Accordingly, I find that the acquisition is slower than necessary, and so there are less number of points sampled as required. These points are not synchronized 25 cycles I have on average and therefore the separate "curves". It is because of the possibility that some points receive a higher number of 'contributions' several times (when you add), the neighbouring points.

    so I conculde that the 9205 is not fast enough to do the job. also noise, perhaps due to crosstalk or gosting when the mux changes channels. the impdences output pressure and the couple are of the order of 10 K ohms.

    the Labview code outline: well, there is a vi FPGA, which takes the rotary encoder ticks and sends a signal to the case of each 3rd tick. The signal contains a 16-bit integer, indicating the number of ticks. This signal is sent to a 1 element FIFO. This fifo is read in a parallel while loop, where it remains awaiting a new element. The while loop bed fifo, where data are available, takes a measure of pressure channel. A node memory of the method is called to provide data according to contained in the index number equal to the number of ticks to signal fifo. Then he adds the current pressure reading to the reading of the memory and stores the sum in the same memory location.  Thus, an array of elements of 1200 is formed, where each elemnt is a sum of the values taken of more than 25 cycles. This memory is transferd to a dma fifo and reading side host. is done similarly to involved couple. host-side the fifo is read and divided by 25 to get the average. This average is displayed on a waveform graph.

    Please check the attached file to get an idea of the problem. Sorry for the long post.

    Please suggest if you understand the problem and suggesstions or solutions.


  • Specific sampling rate?

    So maybe this is a stupid question, but I need to know because I train for a specific sound. Is there a way [to logic] to shoot/change of a certain frequency sampling rates. I can imitate the sound I'm looking for with a low pass filter, reverb and a distortion. But I don't want to 'emulate', this sound, I want to create. Then I can put my own effects and play with it like I want to. If I have to use a bunch of effects to make it sound like I want that also the addition of said effects remove the sound and sound horrible. as to where pulling the sampling frequency of the high frequency and no downs will make me THE noise that I need and always allow to add nice effects to make MY sound instead of someone else. I hope you know what I mean. Let me to you specific real once more. I want to pull or carry a certain frequency sampling rates for a sound under water. I don't want to use filters to make the sound. So can you please help me. I invited everyone locally on how to do it and nothing works. Also if this is not possible in the logic of tell me if there are third party plug ins or maybe even a different DAW that could do like komplete Kontrol or audacity.

    Effect under water

    See if this thread is helpful at all...

  • Sample rate Max USB-4065

    Currently, I am trying to log readings of DC voltage with an AA battery in an ASCII using LabVIEW 2009 of SingalExpress file and the USB-4065 digital multimeter (DMM). I have two stages:

    (1) acquisition of Signal > voltage DC using DMM

    -resolution 4.5 with 3.333333E the value-5 sampling period

    2) save in ASCII

    -The value to add to the file, delete the file after each race

    Faster reading, I can get is a data point written in the ASCII file every eighth of a second.

    Furthermore, I am new and software OR LabVIEW, the LabVIEW SignalExpress software I have is only for evaluation as it was included in the CD of the driver for the USB 4065 DMM.

    1. Max (30 000 samples per second) sampling rate is only achievable by a LabVIEW VI?

    2. Don't I have the wrong settings for DMM step?

    3. Is it because I haven't activated SignalExpress and am only using the evaluation version?

    Thanks in advance for any help!

    Hello Lukos,

    You are assuming that you need access to lower level functions in order to obtain the higher sampling rates. In order to get these speeds, we need to disable some settings that are not accessible via Signal Express. You can create a VI and then use a step VI call in Signal Express to stay in the same environment.

    Kind regards

    -Travis E

  • NI 9237 sampling rate

    Hi all

    I use a module 9237 for certain measures of the load. My experiences last over time and so I'm generating a lot of data due to the minimum sampling frequency.  I can't define an external time base so I can lower my sampling rate to something easier to manage?  Even just a sample rate of 500 s/s would make a huge difference.

    Thank you

    Hi cannisbellum,

    9237 specifications frequency range of minimum data (fs) using the internal master time base is 1,613 kech. / s and external use master timebase is 391 s/s. The simplest would be to sample at 2kS/s and decimate your data by 4. This can be done by using 'Decimate 1 table D' or ".vi Decimate (continuous).

    Rates valid for the NI 9233 OR 9234 sampling and NI 9237 - http://digital.ni.com/public.nsf/allkb/593CC07F76B1405A862570DE005F6836?OpenDocument

    Best,

    CARISA

  • PCI 5154 sampling rate

    Hello

    What is the sample rate max 5154 PCI for two channel inputs? The manual States the 2GS/s is for one channel only. So, am I not able to get a bandwidth of 1 GHz for the simultaneous measurement of two channels? Thank you!

    Hi gbhaha,

    First of all, TIS mode up to 20 GECH. / s using an ADC, while your real time sampling uses two converters a/n at the same time to a single channel.  Take a look at these diagrams that I linked in my first post for more details on this architects.

    About the difference in the bandwidth between the 5153 and 5154 - the 5153 has 500 MHz of bandwidth in its circuits, even when acquiring at faster sampling rates.  The 5154 1 GHz of bandwidth, this is why it is more expensive.

    Kind regards

  • DMM (NI 4070), how to correctly set AC Freq (bandwidth) by the sampling rate

    using a NI4070 multimeter and I see the max connection is 300 kHz by respect it.  But I don't understand how to set the min and max, acFrequency according to the sampling frequency or speed reading.

    6 1/2 digits resolution, the speed can vary from 0.25 s/s to 100 s/s and this range corresponds to a lower end on the connection (minimum acFreq) from 1 Hz to 400 Hz.

    (Q1a) - is the playback speed, controlled by the minimum setting of IviDmm_ConfigureACBandwidth?   or vice versa?

    Otherwise, I do not see how to control the rate of reading or the sampling frequency.   IviDmm_ConfigureMeasurement only allows you to control the range and resolution.

    (Q1b) - is there a way to directly control the sample rate (digitizer) or playback speed (dmm)?

    (T2) - the upper limit of the bandwidth of AC always seems to be at 300 kHz... is there still a reason to reduce this maximum value?

    (T3) - Finally, unlike the traditional niDmm function, the resolution via the IVI configuration should be passed as absolute value; does directly when number of digits and the beach?   For example if I want to 6 1/2 digit to 300V range, I guess that by the specifications that the resolution should be set at 0.001 V... followign, if I want 5 1/2 digits to 1V range, the resolution should be set to 0.00001 V?

    Hi Rjohnson,

    I'll try to answer your questions as best as I can:

    Q1A.  The ConfigurACBandwidth function is used by the driver OR DMM to calculate the good aperautre for the measure.  So yes, by adjusting your minimum frequency, you will affect your reading speed.

    Q1B.  Your reading rate will depend largely on your measuring cycle.  To get a fast measuring cycle, there are a few things that you can adjust.  You can programmatically control your time aperature, as well as your time to settle.

    Q2. I can't find a reason to change. This parameter is only used for error-checking and verifies that the value of
    This setting is less than the maximum frequency of the device.

    Q2B.  I think what you say is right, but I'll need to check on that - I'll let know you as soon as.

    Hope that helps.  "" "I would recommend checking the explanation of the Cycle of the DMM measurement in DMM help' devices ' NI 4070" DMM Measuments "DMM measurement Cycle.

    Take care!!

  • sample rate real vs min sampling rate

    I'm sure it's an obvious answer, but here goes.

    I have a USB-5132 ' scope and using niScope horizontal configuration Timing.vi I put, among other things, the minimum sampling rate. In my case, I chose 20 MHz, which of course gives a sampling of 50 ns period.

    I use niScope reading (poly) .vi with the WDT variant to read waveform data.  I noticed something very strange - waveform limit testing throw error 1802 "signals have a dt of different values '-if I put a waveform components unclusterizer Get on the wire of waveform and looked at the value of dt of the wave." He told me that my dt is 40 ns, which of course is of 25 MHz. I also plead for only 2000 samples.

    So what causes this shift? Why the digitizer does not accept everything just my desired sampling frequency?

    Austin Walton wrote:

    Andy,

    The setting of minimum sampling frequency is the frequency at which digitized
    the samples are stored, expressed in samples per second. This setting is rounded
    up to and including the next legal collection that supports your device.  Ownership of the actual sampling rate calculates the actual sample used for the acquisition rate.

    Unless you specify another source of the clock, the digitizer uses an internal oscillator as clock source.  For the 5132, this oscillator is clocked at 50 Mhz.  When using the oscillator internal as the sample, the digitizer clock source can use versions split to the bottom of this clock, for certain sampling frequencies are not possible.

  • How to create a waveform from an array with arbitrary sampling rates

    Hi I know that sounds a little silly,

    Suppose I created a simple table of figures DBL with a structure For, Say size 16. now, I want to create a waveform DBL with these 16 numbers at an arbitrary sample rate. so if I use 1 kech. / s to the sampling frequency, I want to have a waveform with a duration of 16 milliseconds.

    Please help me, I need it too

    TNX

    Hello

    You must use the wave to build function as shown here: http://zone.ni.com/reference/en-XX/help/371361G-01/lvwave/build_waveform/ . Wire you your Board at the entrance Y and then wire the dt of entry in your sampling rate.

    -Zach

  • Sampling rate 9172 OR cDAQ

    I am using a cDAQ 9172 with modules NI 9219, NI 9264 and three NI 9211.  I'm looking to acquire signals out of the acquisition of data within a loop under continuous sampling.  My program works fine if I set the number of samples to read 1-2 Hz, but I need to go faster than that.  If I change the sampling rate, the loop is executed at this speed but sensors still read only in samples at 2 Hz and then duplicating over and over again.  I was wondering if it was possible to read on 1 sample at the time of the acquisition of data at a faster rate.  I know that the frequency of sampling on the sensors and data acquisition are much higher than that.  1 sample at the time of the Board of Directors has the limitatioins of being only able to run at 2 Hz?  Please let me know

    Thank you

    Craig

    Hi Craig,.

    I don't know exactly what you describe. Are you feeding the DAQmx Read output in an express VI? Or are you using the express VI DAQ Assistant for the analog input task?

    If you use the DAQ Assistant, you can set the ADC synchronization mode without changing your code:

    If not, use the 'Active channels (if subset)' property to control the subset of channels on which your VI defines AI. ADCTimingMode.

    For example, the following code snippet creates 8 virtual channels named myVoltage0 by myVoltage7 and sets HAVE them. ADCTimingMode on myVoltage4 of virtual channels through myVoltage7. These are in the cDAQ1Mod2/ai0 physical channels via cDAQ1Mod2/ai3:

    If you leave off of the entry "name" on the string to create VI, then the virtual channel names are the same as the names of physical channel, so it's the equivalent:

    And by the way, a right-click on the property and selecting "create > Constant ' context menu saves you from having to hardcode a number like 14712.

    Brad

  • Meter in a loop and read reduced sampling rate

    Chassis: 9188

    AI: 9219

    CI: 9401

    As pictured, without reading of CI, I can adjust the sampling rate of metered software. But reading of CI, the maximum rate is around 5 Hz. I already changed 9219 high-resolution property to high speed. What is the problem?

    Hi, Carlos, thanks for your response. I acutally has solved this problem by using the connection series I and CI (i.e. connect error off HAVE error in the CI) but not parallel as the pic shows.

  • 6255 sampling rate causes the dc offset

    I see a dc offset in the measures of analog input I select different sampling frequencies.

    I have USB-6255 (mass termination) multifunction data acquisition and I use measurement and Automation Explorer to put in place my entries.

    My raw analog input is-0, 6250 volts dc, I have set up a task that uses 4 differential channels with no custom scale.

    I have defined the scope of the input signal to +/-0 .8v for you sure I get good resolution.

    Acquisition mode is continuous, samples of read is 1 k and I play with the order of 10kS/s rates 50kS/s.

    While this task runs in the MAX, I can put my cursor in the rate field and use the top and down arrow keys to change the sampling frequency. As I do, I can see the light changes reported as much as 150 MV rate from one to the other.

    It is a significant change when the total time of entry is lower to +/-1v.

    The direction of movement is independent of the increase or decrease of the sampling frequency.

    For example,.

    23kS/s, the declared value is - 0.540v,

    24kS/s, she moves to-0.620v.

    25kS/s, she moves to-0.690v.

    26kS/s, she moves back to-0665v.

    27kS/s, she moves back to-0.625v.

    and 28kS/s, she moves to - 0.535v.

    At first, I thought that the sampling change made a change of the input impedance and change the load on my source, however, all the time, my dc signal source remained at the - 0.625v (as measured with a multimeter fluke at the connection point to data acquisition).

    Why this is happening and what can I do about it? I want to give my users the ability to choose their desired sampling frequency.

    My guess is that I need to add an amplifier to fixed gain with a gain of 5 to 10 to make the input signal to use the maximum of the analog input level (+ / 10v).

    I use MAX version 5.0.0f1

    Thanks for any help,

    Tobin

    Hi Tobin,

    What do you use to generate the signal-. 625 volt? If you are using a switching power supply, you can experience aliasing where the power supply is turned on and stop.

    In addition, are see you the same tensions at the same sampling rate? See you always - .540v to 23kS/s or vary over time?

    Finally, you have a second 6255 you can try to replicate this on? It could be that the unit is defective.

    N

Maybe you are looking for